Sample Question 1

Allotted time: 25 minutes (plus 5 minutes to submit)

Functions f, g, and h are twice-differentiable functions with $g(5)=h(5)=1$. The line $y=1-\frac{5}{3}(x-5)$ is tangent to both the graph of g at $x=5$ and the graph of h at $x=5$.
(a) Find $g^{\prime}(5)$.
(b) Let b be the function given by $b(x)=2 x^{2} g(x)$. Write an expression for $b^{\prime}(x)$. Find $b^{\prime}(5)$.
(c) Let w be the function given by $w(x)=\frac{3 h(x)-x}{2 x+1}$. Write an expression for $w^{\prime}(x)$. Find $w^{\prime}(5)$.
(d) Let $M(x)=\frac{d}{d x}\left[\int_{0}^{2 x} g(t) d t\right]$. Write an expression for $M^{\prime}(x)$. Find $M^{\prime}(2.5)$.
(e) Let $M(x)=\frac{d}{d x}\left[\int_{0}^{2 x} g(t) d t\right]$. It is known that $c=2.5$ satisfies the conclusion of the Mean Value Theorem applied to $M(x)$ on the interval $1 \leq x \leq 4$. Use $M^{\prime}(2.5)$ to find $g(8)-g(2)$.
(f) The function g satisfies $g(x)=\frac{x+5 \cos \left(\frac{1}{5} \pi x\right)}{3-\sqrt{f(x)}}$ for $x \neq 5$. It is known that $\lim _{x \rightarrow 5} g(x)$ can be evaluated using L'Hospital's Rule. Use $\lim _{x \rightarrow 5} g(x)$ to find $f(5)$ and $f^{\prime}(5)$. Show the work that leads to your answers.
(g) It is known that $h(x) \leq g(x)$ for $4<x<6$. Let k be a function satisfying $h(x) \leq k(x) \leq g(x)$ for $4<x<6$. Is k continuous at $x=5$? Justify your answer.

Sample Question 2

Allotted time: 15 minutes (plus 5 minutes to submit)

x	$g(x)$	$g^{\prime}(x)$
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h

Let f be the function defined by $f(x)=\sin (\pi x)+\ln (2-x)$.

Let g be a twice differentiable function. The table above gives values of g and its derivative g^{\prime} at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(a) Find the slope of the line tangent to the graph of f at $x=1$.
(b) Let k be the function defined by $k(x)=h(f(x)+2)$. Find $k^{\prime}(1)$.
(c) Evaluate $\int_{-5}^{-1} g^{\prime}(x) d x$.
(d) Rewrite $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(h\left(-1+\frac{5 k}{n}\right)\right) \frac{5}{n}$ as a definite integral in terms of $h(x)$ with a lower bound of $x=-1$.

Evaluate the definite integral.
(e) What is the fewest number of horizontal tangents $g(x)$ has on the interval $-5<x<0$? Justify your answer.

